Max-Pooling Dropout for Regularization of Convolutional Neural Networks

نویسندگان

  • Haibing Wu
  • Xiaodong Gu
چکیده

Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards dropout training for convolutional neural networks

Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this...

متن کامل

Spectral Representations for Convolutional Neural Networks

Discrete Fourier transforms provide a significant speedup in the computation of convolutions in deep learning. In this work, we demonstrate that, beyond its advantages for efficient computation, the spectral domain also provides a powerful representation in which to model and train convolutional neural networks (CNNs). We employ spectral representations to introduce a number of innovations to C...

متن کامل

Stochastic Pooling for Regularization of Deep Convolutional Neural Networks

We introduce a simple and effective method for regularizing large convolutional neural networks. We replace the conventional deterministic pooling operations with a stochastic procedure, randomly picking the activation within each pooling region according to a multinomial distribution, given by the activities within the pooling region. The approach is hyper-parameter free and can be combined wi...

متن کامل

The Effects of Regularization on Learning Facial Expressions with Convolutional Neural Networks

Convolutional neural networks (CNNs) have become effective instruments in facial expression recognition. Very good results can be achieved with deep CNNs possessing many layers and providing a good internal representation of the learned data. Due to the potentially high complexity of CNNs on the other hand they are prone to overfitting and as a result, regularization techniques are needed to im...

متن کامل

Analysis on the Dropout Effect in Convolutional Neural Networks

Regularizing neural networks is an important task to reduce overfitting. Dropout [1] has been a widely-used regularization trick for neural networks. In convolutional neural networks (CNNs), dropout is usually applied to the fully connected layers. Meanwhile, the regularization effect of dropout in the convolutional layers has not been thoroughly analyzed in the literature. In this paper, we an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015